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We introduce a generalization of the BBGKY equation to define the equi- 
librium states for systems with long-range forces and study the properties of 
such states. We show that there are properties typical of short-range forces 
(shape independence, normal fluctuations, asymptotic behavior of correla- 
tion functions) and others which are typical of long-range forces (possible 
shape dependence, neutrality, sum rules and screening, abnormal fluctua- 
tions, boundedness of the internal electric field). If the force decreases at 
infinity faster than the Coulomb force, the properties will be those typical 
of short-range forces ; on the other hand, if the force decreases at infinity as 
the Coulomb force or slower, the properties will be those typical of long- 
range forces. 

KEY W O R D S  : BBGKY hierarchy ; long-range force ; Coulomb and jellium 
systems; neutrality; screening; canonical sum rules; charge and particle 
fluctuations. 

1.  I N T R O D U C T I O N  

In  this paper ,  we s tudy the B B G K Y  hierarchy  defining equi l ibr ium states for 
infinite, cont inuous ,  classical systems with forces of  a rb i t r a ry  range.  We show 
tha t  there  are  some proper t ies  which are typical  o f  systems with shor t - range 

forces and  others  which are typical  o f  long-range forces. More  precisely,  i f  
the  forces decrease at  infinity faster  than the C o u l o m b  force, the p roper t ies  
will be those of  shor t - range  forces, while i f  the forces decrease like the Cou-  
lomb  force or  slower,  the p roper t ies  will be those o f  long-range forces. 

1 Laboratoire de Physique Th6orique, Ecole Polytechnique F6d6rale de Lausanne, 
Lausanne, Switzerland. 

193 
0022-471518010200-0193503.0010 �9 1980 Plenum Publishing Corporation 



194 Ch. Gruber, Ch. Lugrin, and Ph. A. Mart in  

For classical systems with short-range forces the usual equilibrium 
equations (KMS, u~ BBGKY, (2~ KS, (3~ DLR (4~) involve the fact that the force, 
or the potential, exerted on a particle by the rest of the system is finite. It is 
clear that for systems with long-range forces this property is far from being 
obvious; for example, for the one-dimensional "jell ium" with background 
density p~ the first equation of the BBGKY hierarchy is formally given by 

d 
--flPBtr f s i g n ( x -  fl f dy sign(x ) Y  p(l>(x) = dy y )  + - y)p<2>(x, y) 

Obviously the integrals do not have a well-defined meaning and one needs a 
generalization of the equilibrium equation in order to treat properly such 
non-absolutely convergent integrals. 

The generalization consists in assuming that the BBGKY hierarchy is 
asymptotically satisfied when the effects of the force are first restricted to a 
sequence of finite regions (Va) converging to the whole space as h -+ oo (see 
Section 2 for a precise formulation). This amounts simply to considering the 
integrals occurring in the BBGKY hierarchy as limits of appropriate sequences 
of definite integrals. Clearly if the force is integrable, our prescription reduces 
to the usual BBGKY hierarchy. On the other hand, when the force is not 
integrable, a state verifying the generalized BBGKY hierarchy may depend 
genuinely on the sequence (V~); in particular, we expect that different se- 
quences (Va) will distinguish different periodic structures. 

Therefore one has to consider the sequence of regions (Va) as an addi- 
tional parameter which, together with the usual thermodynamical parameters 
such as the temperature and the density, is necessary to characterize an 
equilibrium state. 

It was shown in Ref. 5 that this generalized BBGKY hierarchy is equiva- 
lent to a generalization of the classical KMS condition and that both equa- 
tions are satisfied by certain states of the one-dimensional Coulomb gas (the 
two-component system and the jellium). 

We emphasize again that the prescription involving the sequence of 
volumes (Vx) in the generalized BBGKY hierarchy, or in the KMS condition, 
applies to the correlation functions of the infinite system and must not be 
confused with the sequence of volumes used in the construction of such states 
using the thermodynamic limit of finite Gibbs states. We should recall that 
the equilibrium states of classical Coulomb systems have also been studied by 
means of thermodynamic limits of finite-volume Gibbs states (see Refs. 5 and 
6 for the one-dimensional Coulomb gas; Refs. 5 and 7 for the one-dimensional 
jellium; and Ref. 8 for Coulomb systems in higher dimensions); however, the 
structure and consequences of the equilibrium equations obeyed by such 
states have not been investigated. 
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In this paper we shall study the general properties of equilibrium states 
defined by means of the generalized BBGKY hierarchy, but we shall not 
consider the relation between the two procedures mentioned above. 

In Section 2, we introduce the systems of interest and formulate the 
generalized BBGKY hierarchy in terms of convenient physical parameters. 
To obtain such parameters we notice that a well-defined physical quantity is 
the effective field E(x) inside the system, which represents the combined effect 
of the field due to the particles together with the field due to possible outside 
sources (such as charges at infinity). Clearly a periodic, ionic Coulomb state 
will carry a nonzero electric field with the same periodicity. Translation- 
invariant states with nonzero electric field can also be exhibited in one dimen- 
sion. (9) This effective field is a function of the state and should not be confused 
with the purely external field: it is a typical feature of systems with long- 
range forces that it is not possible to distinguish in this effective field the 
contribution due to the external sources as would be the case for systems with 
short-range forces. It thus follows that the external field is not a convenient 
parameter to label equilibrium states for systems with long-range forces and it 
should be replaced by the value E of this effective field at a given point, say 
the origin. We thus parametrize the equilibrium states by the usual thermo- 
dynamical parameters (T, p,...) together with the effective field at the origin 
E = E(0) and the sequence of regions (Vx); we then call "regular equilibrium 
states," the states parametrized in this manner which are solutions of the 
BBGKY hierarchy and satisfy certain smoothness and clustering conditions. 

Section 3 is devoted to the study of the general properties of regular 
equilibrium states. We first investigate to what extent a regular equilibrium 
state will depend on the sequence of regions (Vz). The main result is that the 
role played by (V~) is related to the range of the force: for forces decreasing at 
infinity faster than the Coulomb force regular equilibrium states do not de- 
pend on the geometry of the (Vz), whereas for the Coulomb force (or forces 
with slower decrease), sequences (Vz) having asymptotically different shapes 
may distinguish different equilibrium states. We then discuss the transforma- 
tion properties of  the state under various symmetry operations, and we deduce 
the consequences on the effective field of the invariance of the state under 
translations, rotations, charge conjugation, and scaling. 

In Section 4, we show that it follows directly from the equilibrium equa- 
tion that a regular equilibrium state invariant under a discrete subgroup of the 
translations (Bravais lattice) must be locally neutral as soon as the force 
decreases like the Coulomb force or slower. 

On the other hand, for forces with faster decrease at infinity, nothing can 
be concluded about neutrality. This result also shows that for one-component 
systems (without a rigid background) there does not exist regular equilibrium 
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states if the force decreases like the Coulomb force or slower. Therefore, the 
analysis of this section shows once more that the Coulomb force is precisely 
the borderline where new properties appear. 

In Section 5, we deduce another essential characteristic of systems with 
long-range forces: the canonical sum rules. The sum rules are a hierarchy of 
integral relations that link the n-point to the (n + 1)-point correlation func- 
tion. We show that these sum rules follow necessarily from the equilibrium 
equation as soon as the rate of decrease of the truncated correlation func- 
tions (i.e., the clustering) is faster than the decrease of the force at infinity. 
The latter condition is essentially verified when the state has the rather mild 
property of ~l-clustering and thus any regular equilibrium state of a system 
with long-range force (in particular, Coulomb systems) will obey the hier- 
archy of sum rules in addition to the BBGKY hierarchy. These sum rules are 
identical to those which exist by the very definition of the correlation func- 
tions in a finite canonical ensemble of several kinds of particles. Although 
these constraints are trivially satisfied for such finite systems, they are ob- 
viously not true for an infinite system of free particles and they are not 
expected to remain true after the thermodynamic limit in the case of short- 
range forces; in other words, the validity of the sum rules must be seen as a 
feature specific to systems with long-range forces. 

We develop in the last section some consequences of the sum rules; the 
most striking is that the mean square fluctuations of the charge in a region A 
are not extensive with A. This shows that the charge does not have the usual 
behavior of macroscopic observables; further aspects of the charge fluctua- 
tions are studied in Ref. 10. This result has several interesting implications: 
since in a one-component Coulomb system (jellium) the charge is identical 
with the particle number, we conclude that the fluctuations of the particle 
number are not extensive in the jellium. This implies in turn that the jellium 
has always zero compressibility. Conversely, consider a compressible fluid 
constituted by a single kind of particles interacting with a short-range force. 
Since the compressibility is nonzero, the sum rule cannot hold true and 
therefore we must conclude that the decrease of the truncated functions 
cannot be faster than the decrease of the force. Thus we get a lower bound on 
the clustering. With an additional assumption on the derivatives of the trun- 
cated functions, we can improve this lower bound and show that the trun- 
cated correlation functions cannot decrease faster than the potential itself. 
It thus follows from a result of Groeneveld (11~ that the two-point truncated 
correlation function decreases exactly l ike the potential at infinity at low 
density. 

Finally, the sum rules provide an upper bound on the possible value of 
the effective field in translation-invariant Coulomb systems with several 
components. 
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2. THE  S Y S T E M  A N D  THE B B G K Y  H I E R A R C H Y  

We consider a system of  N different types of  " c h a r g e d "  particles in [~v, 
with " c h a r g e s "  cr in Y,, where Y~ is an N-poin t  subset of  R\{0}. We denote the 
coordinate  and charge of  a particle by 

q=(x~), x = { x ~ ; ~ = l  ..... v } ~  v, ~ (1) 

and for any V c Rv we write fv dq = fv dx ~o~. 
The particles interact  by means  of  a two-body  force F(ql, q2) of  the fo rm 

F(ql, q2) = ~l~2F(xz - x2) (2) 

where F(x) = {F~(x); ~ = 1,..., v} is independent  of  the charge. 
Moreover ,  the particles are imbedded  in the uni form background  of  

fixed, negative unit  charges with particle density pB /> 0. This uni form back-  
ground acts on the particles as a one-body force formal ly  given by 

= - p B ~ f  F(x - y) dy (3) FB(q) 

Finally the particles are subjected to the effects o f  a constant  force 

Fro(q) = aD (4) 

where D = {D~; r = 1 ..... v} is a fixed vector  in R~. 
Systems of  part icular  interest are Coulomb systems with the two-body 

force given by 

F ( x )  = x / l x l  ~ (5) 

or by a smeared Cou lomb  force 

f x - y  F(x) = g(Y) I x -  y]V dy (6) 

where g(y) is a smooth  and rapidly decreasing function. 
The  following special cases of  Cou lomb  systems are often studied: (a) the 

one-component plasma or jellium with pB r 0, N = 1, and a = + 1; (b) the 
two-component plasma with pB = 0, N = 2, and cr~ = -~r  2 . 

We have int roduced the constant  force (4) in order  to discuss later 
C o u l o m b  systems with nonvanishing constant  external electric fields. 

We shall consider a general  class of  forces satisfying the following 
conditions.  

Condition (F1) on the force. (i) F,(x) is locally integrable and cont inuous 
in any open set which does not  contain the origin x = 0. (ii) F~(x) is con- 
t inuously differentiable and bounded  for ]x I > r. 

In the following we shall discuss states which are described by correlat ion 
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functions 2 P(~)(ql ..... qn) = P(n)(xlcrl, x~cr2,.-., xn~.), n = 1, 2,.... The correla- 
tion functions are positive, symmetric under permutations of  the arguments 
qz ..... q~, and satisfy the following condition: 

Condition ($1) on the states. (i) The p(n)(ql ..... qn), as functions of  
xl ..... x , ,  are of  class C O everywhere in R TM, and of class C 1 for any open set 
which does not contain coincident particles. (ii) The p(")(q~ .... , q,) are 
uniformly bounded in IR TM. 

We then define the equilibrium states by means of the solutions of the 
following BBGKY equation: Let (V~) be a sequence of bounded space 
regions converging to R ~ as A -+ oo. We say that the state p with correlations 
p(")(q~ ..... q,) is an equilibrium state with respect to the parameter D and the 
sequence of  volumes (V x) [for temperature/3-z,  background density pB, and 
two-body force F(x)] if (V~ = {~/~x~.~; c~ = 1,..., v}) 

Vxp(')(qz ..... q , ) = ~ l i m ( l c ~ z D - p s c r z (  F ( x ~ - y )  dy 

+ ~ F(ql,qJ)]P(~)(ql .... ,qn) 
] = 2  

+ fv dqF(ql,q)p("+l'(ql .... , q , , q ) }  (7) 
A 

This definition deserves the following comments:  

(i) The hierarchy of correlation functions is understood to describe an 
equilibrium state of  an infinitely extended system. The sequence (Vx) occurring 
in (7) applies to the state of  the infinite system and must not be confused with 
sequences of  volumes used in the construction of such states by taking the 
thermodynamic limit of  finite Gibbs states. 

(ii) I f  the force is integrable in the whole space, it follows from the 
general conditions F1 and S1 that the limit in (7) exists and is independent of  
the sequence (Vx). In this case (7) reduces to the usual BBGKY hierarchy and 
p is independent of (V~). 

(iii) I f  the force is not integrable, a limiting procedure is needed to sum 
the forces up to infinity and the state p may depend genuinely on the sequence 
(Va): different sequences can distinguish different physical states (for instance, 
different periodic structures). 

(iv) We adopt  (7) as a definition of equilibrium states for  systems with 
long-range interactions, and we want to discuss the properties of the solutions 
of  (7) assuming that they exist. Some motivations can be found in Ref. 5, 
where it is shown that  the BBGKY system in the form (7) is equivalent to a 
natural generalization of the classical KMS equilibrium condition. Moreover, 
it is shown in Ref. 5 that the simplest cases of  Coulomb systems (the one- 

2 We shall also use the notation p(n)(qz . . . . .  q,) = ~(~ "x val...~nL ~ , ' " ,  Xn). 
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dimensional one- and two-component plasmas) do satisfy Eq. (7) for 
appropriate sequences (Vz). 

Since we are mainly interested in the study of extremal states, we shall 
restrict our investigations to equilibrium states which satisfy the following 
C1 clustering condition: 

(C1) f IO~">(q~,..., q,)[ dqx < oo, n >>. 2 
JR v 

for all q2 ..... q~, where the p(z"~(qz ..... qn) are the truncated correlation functions 
defined in the usual way. 

To study the solutions of Eq. (7), we would like first to replace the limit 
of the sum of integrals in Eq. (7) by a simpler limit involving only one integral. 
To do so, it is convenient to introduce the charge density c, associated with 
the state p 

c (x) = - (8) 

The main observation is that if a state is Cl-clustering, the limit on the rhs of 
Eq. (7) implies the existence of the following limit: 

lim ( r (x  - y)c,(y) dy 

which involves only the one-point correlation function. 

Proposit ion 1. For any Cl-clustering equilibrium state p, 

(i) lim f F(x - y)cD(y) dy (9) 

exists except possibly at these points x where p<"~(xal, q2 ..... q,) = 0 for all 
values of n, al,  q2,..., qn. 

(ii) Equation (7) is equivalent to the following equation: 

V1p<~(ql,...,q~) = fl(~iD + ~ [ l i m  f F(xl - y)co(y ) dy] 
L ~ Jv~ 

+ ~ F(q~,qs)}P(")(q~ .... ,q,) 
j = 2  

+ f l f  dq F(q~, q)[p("+ ~(ql ..... q,, q) - p(~(q~ ..... q,)p(~>(q)] 
JR (10) 

where we can replace [lim~_.~ fv~ F(x~ - y)c,(y) dy] by zero whenever the 
limit does not exist. 
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Proof. If  the state satisfies the clustering condition C1, we notice that the 
function 

F~(ql, q)[p("+l~(q~ ..... q~, q) - O(~(ql .... , q,)p~l~(q)] 

is integrable in q. Indeed this function is integrable locally by the assumptions 
F1 and S1, and integrable at infinity by the clustering and the fact that 
F(qz, q) remains bounded. Thus 

lira ( dq F~(ql,q)[p<"+~(ql .... , q, ,  q) - p(~(q~,..., q,)p(~(q)] 
~. -o  az J V , x 

= f=v dq F~(q,, q)[p(~+l~(qz ..... q, ,  q) - p<">(q, ..... q,)p(~(q)] (11) 

exists and is independent of the sequence (Va). Subtracting and adding the 

function fva dq F~(q,, q)p<~>(q, .... , q~)p(Z~(q) to the integrand of the last term of 

(7), we see that (7) and (11) imply that the limit 

l i m [ f  v F~(x~-y )cD(y )dyp~(q~ , . . . , q~ ) ]  (12) 

exists for all n, ql,..., q, and (7) implies (10). Furthermore, (12) implies the 
existence of the limit (9) for all points x such that p(">(xa~, q2 ..... q,) # 0 for 
some n, al,  q2 .... , q~ and otherwise the limit (12) is zero. �9 

Remarks 
1. If  the equilibrium state is Cl-clustering and invariant under transla- 

tions, then p~>(xa) = po ~ 0 implies that the limit (9) exists for all x. 
In any case this limit exists at each point x where p~)(xa) ~ 0. 
2. One should note the following important feature, which is specific to 

systems with long-range forces. If  p is a Cl-clustering equilibrium state with 
respect to D and (Va), then for any a ~ R ~ the same state is obviously an 
equilibrium state with respect to the new sequence of  volumes (Va + a), 
V~ + a = {x + a; x ~ V~}, and the new parameter D(a), 3 

D ( a ) = D +  lim{f v F(x-y)eo(y)dY-fv F ( x - y ) c D ( y ) d y  } 
A ~  ~ ~+~ (13) 

If  the force has long range, the limit in (13) can be different from zero 
(see, for instance, the case of the one-dimensional jellium, Section 3.3). 

This shows (as already discussed in Ref. 5) that D does not have a well- 
defined meaning without the specification of the sequence of volumes (V~). 
In particular, D cannot represent a constant external applied field. 

On the other hand, the new state -r~p obtained by translation of p is 
clearly an equilibrium state with respect to the same parameter D and the new 

3 We shall see that for a large class of long-range forces, including Coulomb, D(a) is 
independent of x (see Proposition 2 below). 
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sequence of volumes (Vx + a). Therefore if the state is not EV-invariant, the 
parameter  D does not distinguish between the state and its translates. 

This discussion leads us to the following conclusion: The parameters D 
and (V~) are entangled and D does not provide a physical nor a convenient 
labeling of equilibrium states. 

For these reasons we want to label the equilibrium states by means of a 
new parameter  E with the property that if O is an equilibrium state with 
respect to E and (V~), then it is also an equilibrium state with respect to E and 
(Va + a); in this manner the parameters E and (Vz) are partially disentangled 
and it will be possible to give a physical interpretation of E. 

To find such a parameter we notice that although the quantities D and 

limx. co fvx F(x - y)c~(y) dy do not have a direct physical interpretation if 

the limit (13) is nonzero, their sum, which we denote 

ED(x ) = D + lira I F(x - y)co(y) dy (14) 
~~  ~ dW~. 

will have a physical meaning; indeed it follows from (10) that 

l {vP<l)(q)- f~ dq F(q,q)p(T2)(q,q)} 

and thus E~(x) depends only on the state and not on the labelling used. 
We shall then call Eo(x ) the effective field at the point x in the state p. 
The main idea is to label an equilibrium state by E, (V~) where E is the 

value of its effective field at the origin, 4 i.e., 

E = E,(0 ) = D + lira I F(-y)e~(y)dy (15) 
~ JV~. 

We note that if p is an equilibrium state with respect to D, (VA), then its 
translate ~-~p is an equilibrium state with respect to D, (Vx + a) and thus the 
effective field in the state ~ p  is given by 

E~o~(x) = D + lira [- F(x - y)e~,(y) dy 
~ a o  dV~ +a 

= D + lim [ F ( x -  a - y ) c , ( y ) d y  
h~oodga 

i.e. 

E~oD(x ) = ED(x -- a) (16) 

In the rest of this paper we shall then discuss the properties of equilibrium 
states in terms of E instead of D. 

We remark first that it follows f rom (16) that if p is an equilibrium state 

( I )  (3" 4 Without loss of generality we can assume that p (x )  is not zero at the origin and thus 
we know by Proposition 1 that the limit (15) exists. 
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with respect to E, (V~), then rap is an equilibrium state with respect to Ea, 
(VA + a), where 

E~ = E, ap(O ) = E p ( - a )  (17) 

Furthermore, in terms of the parameters E, (Va), the effective field is given by 

Ep(x) = E + lira ~ [F(x - y )  - F ( - y ) ] c ~ ( y )  dy (18) 
A~oo JVA 

and the BBGKY equation becomes 

Vlp(~(ql ..... q~) 

= ~(o-l{E - [- A1Lrnm flzA [F(x1 - fl) - F ( -  j2)]Cp(j) dr} 

+ L F ( q " q ' ) )  p<'~ ..... q'~) 
Y=2 

+ [3~ dq F(q, ,  q)[p<"+*~(q, ..... q,, q) - p(">(q~ .... , q,)p<*>(q)] 
aa v (19) 

Clearly any equilibrium state defined by a solution of Eq. (10) also yields 
a solution of Eq. (19). Conversely any solution p of Eq. (19) such that 

lira i -  F(x  - y)cD(y ) dy 
A-~m ~ A  

exists yields a solution of Eq. (10). 
We shall then adopt Eq. (19) as the definition of equilibrium states and 

discuss the properties of the solutions of this equation. 

3. GENERAL PROPERTIES OF REGULAR E Q U I L I B R I U M  
(RE)  STATES 

We call regular equilibrium state (RE state) a state which is C1- 
clustering, satisfies S1, and is a solution of the BBGKY hierarchy (19). 

In this section we shall first study the dependence of a RE state PE.(v~> on 
the sequence (Va); we shall then give the transformation properties of P~.(v~ 
under various symmetry operations, and finally we shall discuss the physical 
interpretation of the parameter E. 

3.1. Dependence  of PE.(v~,) on (V~) 

To discuss to what extent pE.(v~) depends on the sequence (V~) we first 
have to specify how (Vz) tends to [R v. 

In the following we consider sequences (V z) converging to Ev in the 
following manner: 

(a) Va -+ R v in the sense of van Hove, i.e., if Va h is the set of points that 
are at a distance less than or equal to h from the boundary ~Va of Va, then 
IVan[/[Vat--+0 as A - + ~ .  
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(b) For each Va, there exist two balls B~- and Ba + centered at the origin 
with radii Ra-  andRa  + such that Ba- _c Vx _~ Ba + and RA- -+co  as ;~-+ m, 
with RA + = O(Ra-). 

Furthermore, in some cases, we shall also need the following condition: 

(c) [w  l/I = as A - +  

Condition (b) means roughly that "Va extends at the same speed in all 
directions" as h ---> oo. 

Condition (c) means that the volume of a boundary layer of  fixed thick- 
ness is of the order (R~-) v-~ as ~ - +  oo. 

We shall now show that for a given two-body force the limit 

lira f [r(x  - y)  - r ( - y ) ] e o ( y ) d y  
a~ dva 

is independent of  (Va) within a certain class of sequences (Va) which we shall 
specify. This class will depend on the range o f  the force. We shall thus conclude 
that if  pE,(va) is a RE state with respect to E, (Va), then ps,(v~) is also a RE 
state with respect to E and (Va') whenever (V/ )  is in the same class as (Va). 

Let us then introduce the following relations between sequences (Va): 

1. (Va 1) ~ (Va 2) if Va 1/~ Va 2 = O(Va ~ c~ Va 2) as a -+ oo. 

2. (Va ~) % (Va 2) if Va ~ ~ Va = = o(Va ~ ~ Va ~) as a --+ oo. 

[Here Va * ~ Va ~ is the symmetric difference of the regions Va ~ and 
Va =, i.e., Va ~ ~ Va = = (Va ~ to Va~)\(Va 1 ~ Va=).] 

3. (Va*)%(Va ~) if  Va = is some translate of  the region Va z, i.e., 

V~ ~ = { x + a ; x ~ V a  ~}= V~ ~ + a .  

Lemma 1. Consider sequences (Va) converging to R v in the senses (a) 
and (b). Then the relations %, %, % are equivalence relations and 

0~ 8 ~ (Z 2 =:>- C( 1 . 

The proof of the lemma is given in the Appendix. 
The property that distinguishes these different equivalence relations is 

that in cases % and aa the volume of the symmetric difference between the 
regions Va 1 and Vx 2 is not allowed to grow extensively as ~--+ m. I f  
(Vx 1) a~ (Vx2), then Va z and Va 2 may have asymptotically completely different 
shapes, whereas (V~ ~) a2 (Va 2) means roughly that Vx ~ and Vx 2 must have 
asymptotically a similar shape. When (Va ~) % (Va2), then VA ~ and VA 2 have 
obviously the same shape. 

Proposition 2. L e t  p~,<v.> be  a RE state. 
(i) I f  F(x) + s then p~.<v~,) = pE,<v~) for any sequence (V/) .  
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Assume that the sequence (Va) has the properties (a) and (b). 
(ii) If  Ixl~lVF~(x)[ = o(1), then p~,(v~,~ = pE,(v~ for any sequence (V/)  

such that (Va') ~ (Vx). 
(iii) If  [x[~[VF~(x)l = O(1), then OE,(v;~ = pE.(v~)for any sequence (V/)  

such that (V/)  ~2 (V~). 
Assume, moreover, that the sequence (Va) has the property (c). 
(iv) If  [x[~-zIVF~(x)[ = o(1), then P~,(vz~ = oE,(v~ for any sequence 

(V/)  such that (Va') % (Va), i.e., p~,(v~ = pE,(v~+~ Va E ~ .  

Proof .  We show in all cases that the limit of 

'v(a [F,(x  - y )  - F , ( - -y ) ]cD(y  ) dy - ,v[ [F"(x - y )  - F , ( - y ) ] c o ( y  ) dy  
(20) 

as h -+ oo is zero. This implies that the limit with the sequence (V/)  exists and 
is equal to the limit with the sequence (Va). 

The case (i) is obvious since the charge density is supposed to be uni- 
formly bounded. 

For the other cases, the quantity (20) is majorized by 

[]coH~o( [F~(x - y )  - r = ( - y ) ]  dy 
o v  hAga" 

Let -~a = min(Ra-, RE'), with Ra- and RE' the radii of the internal spheres 
Ba- and BE' ,  and choose h such that /~a > r + Ixt (r given in F1). If  
y ~ Va A V/,  we have clearly 

]y  - x] /> l lYl - I x l l / >  R .  - Ix[ > r (21)  

Under the assumptions made on the force in F1 and (ii) or (iii), we get for 
y E Va A Va', using the limited Taylor expansion theorem, 

IF~(x - y) - r ~ ( - y ) l  = Ix v r ~ ( - y  + Ox)[, 0 <~ 0 <<. 1 

A A 
<~ v[x I sup <~ v[x[ 

~v~Av~, l Y -  ON] ~ - I x l )  ~ 

A 
~< cst (~a)------- ~ (22) 

where the constant A can be chosen arbitrarily small in the case (ii). Thus 

f v  [F~(x - y )  - F~( -y) [  dy ~< cst A]Va A V~'[ [Va A V/] ^~v~. (Ka) ~ ~< cst A J V~ n Va'[ 

(23) 
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The last inequality follows from the property (b) of our sequences of volumes 
(v~): 

(/~), ~< max ' R s  [min(Ra +, R2')] '  %̀< cst ]V~ c~ V~' I 

In the case (ii), I V~ A V~']/] V a n  V~' I remains bounded as A --> ~ and we can 
let A ---> 0. In case (iii), 

lim (I va A v/ l / I  va c~ V/l)  = 0 

For case (iv), V~' = {x + a; x ~ V~} for some a is simply a translate of V~. 
Without loss of generality we can assume that (V~) and (V~') have the property 
(b) with respect to the same sequences of balls (B~-) and (B~ § with radii 
Ra- and RA +. Therefore we can replace/~a by R~- in the estimates (22). The 
inequalities (22) and (23) become 

A 
]F=(x - y)  - F,~(-y)l ~< ,,Ixl (n  _),_1 (24) 

and 

f v  ]F~(x - y)  - F~(-Y)I  dy <~ cst A [Va A Va'l 
~,,w (g~-)~-* 

~< cst A Ra- [Va A Va'l (25) 
IV~l 

where A is arbitrarily small. 
Now in virtue of (c), we have 

]Va A Va'I/]VaI <~ 2[VI<I/IVa] <<. cst/R~- (26) 

where V~ < is the set of points that are at a distance less than or equal to laf 
from. the boundary of VA. The conjunction of (25) and (26) proves (iv). [ ]  

In order to make the content of the proposition more explicit, we notice 
that if the force satisfies the conditions 

[x]qF~(x)l = O(l), Ix l -+  oo (r  > 0) 
lxl'+llVF=(x)l = O(1), ]xl ~ o o  

(as will be the ease in Sections 4 and 5), then the equivalence class of (VD is 
specified by the asymptotic behavior of the force as given in Table I. 

There are three important observations to be made at this point. 
1. The RE states are parametrized by 8, pB, E, and the equivalence class 

of (V~), where the equivalence relation depends on the range of the force. 
However, if the two-body force is ~r the states are simply parametrized as 
usual by 8, pB, and E. 
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Table I 

Asymptotic 
behavior of the 

force Equivalence class of sequences of volumes 

Case (i) 7 > v 
Case(ii) v >t 7 > v -  1 

Case (iii) 7 = v - 1 
Case (iv) v -  1 > y > v -  2 

�9 , ) Va 1 and Va 2 allowed to 
All sequences are eqmva ien t [hav  e 

completely different 
(VA 1) al (V~2) f)shapes 

(Va 1) a2 (Va2)'~Va 1 and Va 2 have asymptotically the 
(Va0 a3 (Va2)jsame shape 

2. The Coulomb force (y = v - 1) is just at the borderline between 
cases (ii) and (iv): if the force decreases faster than Coulomb, then case (ii) 
shows that the state will not depend on the shape of the regions (V~), whereas 
for the Coulomb force, case (iii) shows that different equivalence classes of  
regions (V~) with different asymptotic shapes may distinguish different states. 

3. Two sequences (Va 1) and (Va 2) such that one is the translate of  the 
other are equivalent as long as the force decreases faster than Ix I - r  with 
7 > v - 2. This means that pE.(v~> may depend only on the asymptotic shape 
of the V~, but not on the absolute location of the Va in space. 

In the next section, we shall consider special sequences obtained by 
dilatations of  a fixed region Vo: 

V~ = {hx; x ~ Vo} = •Vo, ~ ~ ~+ 

where Vo is assumed to have a boundary ~Vo which is a piecewise C 1- 
manifold in ~ .  The states obtained in this manner are then parametrized by 
E and Vo and we introduce the notation 

PE,Vo ~ PE,(;~Vo) 

The sequences of  dilated regions always have the properties (a), (b), and 
(c) above; furthermore, (,~Vo 1) cq (hVo2), but (AVo z) ~2 (hVo 2) if and only if 
1/o1= V0 2. 

I f  we can find Vo' # V0 such that pE.Vo is not an equilibrium state with 
respect to (hVo'), we say that p~.vo is shape dependent. Therefore we conclude 
from Proposition 2 that if the force decreases faster than Coulomb, any RE 
state is shape independent. However, if the force decreases asymptotically 
like the Coulomb force (or has a slower decrease), p~.Vo may be genuinely 
shape dependent. 

3.2.  T r a n s f o r m a t i o n  P r o p e r t i e s  o f  RE S t a t e s  

We examine the transformation properties of  a RE state under various 
symmetry operations. 
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Let pE.(v~) be a RE state with correlations pol~(") . . . . .  o,,','~r" ,..., x~). With a a 
vector in E~, R a rotation, and I the space inversion, we consider the trans- 
formed states .r,~pE,(v~), "rRpz.(vA), and "r~p~.<v~) defined respectively by the 

(n) X a) ,  ~(n) [R-~L~ correlation functions p ~  .. . . . . .  ( 1 - a , . , . ,  x~  - t , ~  ..... ~ ~1 , . . . ,  R - l x ~ ) ,  

and O(~ ), ...... ( -  x~ .... , - x~). I f  both ~ and - (~ belong to Z, we also introduce 
the charge conjugate state %pE.(v~) defined by the correlation functions 
p(n) _ ~  ..... _ o~(x~ . . . . .  x ~ ) .  

Proposition 3. Let pE.(v~) be a RE state with respect to p~, E, (Va). 
(i) The translated state r~p~.(v~) is a RE state with respect to p~, E~, and 

(Va + a), where 

E,  = E + lim ( [ F ( - a  - y )  - F ( - y ) ] c ~ ( y )  d y  (27) 
h~oo ~V3. 

i.e., 

TaPE,(VA) --~ PEa.(Vh +a) 

Furthermore,  the effective field (18) in the state rap~.(va) is given by 

E~oo(x) = :Zo(x - a) ( 2 8 )  

(ii) I f  the force is covariant under rotations, then "CRpE.(V3.) is a RE state 
with respect to pB, R E ,  and ( R V a ) ,  i.e., 

TRPE.(VA) -~ DRE.R(VA)~ 

(iii) I f  F ( x )  = - F ( -  x ) ,  then 
I E  = - E ,  and ( I V a ) ,  i.e., 

TIpE.(VA) ~ [9_E.(IVA), 

RV~ = { R x ;  x ~ V~} 

ripE.(va ) is a RE with respect to PB, 

I v ~  = { x ;  - x e V~} 

(iv) I f  Z = - Z, then .rcp~.(v~) is a RE state with respect to - pB, - E, and 
(Va), i.e., 

~rCppB.E.(Va ) = p_pB._E.(Va) 

P r o o f .  Denote by p~n)(q a .... , q , )  the correlation functions of  the translated 
state %PE.(v~> and change xj into xj - a in Eq. (19). Since the two-body force 
is itself translation invariant, all terms of Eq. (19) can be expressed with the 
p~) (q l  . . . . .  q , )  and retain the same form except for the third one, which 
becomes 

lira f [ F ( x l  - a - y )  - F ( - y ) ] c o ( y )  d y  
A-+o~ jVA 

= lim ( [ F ( x l  - a - -  y )  - F ( - y  - a ) ] c o ( y  ) d y  
h~oo ~irh 
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[, 
+ lim [ [ F ( - a  - y )  - F( - -y ) ]cD(y  ) dy 

A ~ o o  j V  A 

= lim l [F(x l  - y )  - F ( - y ) ] c , ( y  - a) dy 
A ~ o ~  Jgh+a 

l" 
+ lim / [ F ( - a -  y ) -  F ( - y ) ] c o ( y  ) dy 

A~oo dV A 

(29) 

All limits in (29) and (30) exist by assumption. We see from (30) that the 
translated state .r~pE,(v~) obeys the same BBGKY equation (19), but with 
E, (Va) replaced by E.  given by (27) and (VA + a), thus proving (i). Parts (ii)- 
(iv) are proved in a similar way. �9 

i.e., 

Corollary. Let Ps,(v~> be a regular equilibrium state. If  Ix[V- 11VF~(x) I 
= o(1), then r~pE.(v~) is a RE state with respect to E~, (Va). 

Proof. If  Ixl -llVf (x)l = o0) ,  then PE,(v,,)= pE.(va+~; by Proposition 
2(iv) and thus "rap~,(v~) = pEa,(Va+a) = pEa,(V D. �9 

Propos i t ion  4. Let pE.(va) be a RE state. 
(i) pE.(v~ invariant under a translation a implies 

/ ,  
lira I dy [ F ( - a  - y )  - F ( - y ) ] c , ~ ( y )  = 0 

A--+oo J V A  
(31) 

(ii) OE (v~) invariant under space inversion implies E = 0. 
(iii) pE.(vz) invariant under a rotation R such that R E  r E implies E = 0. 
(iv) pB = 0 and p~.(v~,) invariant under charge conjugation implies E = 0. 

ProoL Part (i). Setting -(") Cx - a) = ~(") rx x.) in F~r l . . . ank  1 - -  a ~ . . . ~  x n F r  1 ~ . ' . ~  

the BBGKY equation (19), we get 

l" 
lira [ [F(x  - a - y )  - F ( - y ) ] c p ( y )  dy  
A ~ oD ,,) V A 

/ ,  
= lira [ [F(x  - y )  - F ( - y ) ] c p ( y )  dy  

A ~ o o  J V A  

/, 
lim [ [F(x  - a - y ) -  F ( x  - y ) l cp (y )  dy = 0 
A~OO d V a  

we get (31) by setting x = 0. 

(30) 
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Parts (ii) and (iii). Let 0 be a rotation or an inversion; pro(x, ~) = 
oa~((gx, ~) implies Vp<l~(x, a) = r Vp<l)(~)x ,~), and thus 

E +  lira ( [ F ( x -  y )  - F ( - y ) ] c o ( y  ) d y  
A~oo dVh 

= # - I { E +  l i m (  [ F ( ( g x - y ) - F ( - y ) J c o ( y ) d y }  
a ~ m  dVh 

Setting x = 0, we obtain E = CE. 
Part (iv) follows from Proposition 3(iv). 

Proposition 5, "'Scaling property."  Let p(e,E,.~,<v~>> be a RE state. 
If the force satisfies the scaling transformation 

F( lx )  = l -VF(x )  

then the transformed state rzp defined by 

(rlp(~))(qt .... , q.)  = >~(")  ~ . . . .  xn) F~I., .an\-'~,l 

is a RE state with respect to the parameters 

[U ) = l~-~fi, E (~ = I~E, p~) = l 'pe,  V(a ~) = l - l V a  

Proof .  

v~(~o%(q~ ..... qn) 

(n) = l ~ VlOo~...,~(Ixl .... , lx~) . l  

+ ~ e , f E  + lim ( [F(lxz - y )  - F ( - y ) ] c ~ ( y )  dy ~l ~ 
\ h~oe JV A 

+ %F( I ( x l  - xj))  P~z...~,( 1 lx , )  
1 = 2  

+ ,,l+.~=. f= { ; = r ( l x ,  -'~ <"+~, qx -- Y)tPoz ..... o..ok 1,,.., lx~, y )  

- Po~ ..... ~ 1 , . . . ,  

= f i l a , ( E +  l - ' l i m f a _ , v a ( [ F ( x  ~ - y ) - F ( - y ) ] [ o ~ ( r e p ( x ' ) ( y ~ r  , 

-~ ( dq { f ( q l ,  q)[r~p<n+ ~)(q~ ..... q=, q) + 
J 
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- ( - , # " ~ ) ( q l  . . . .  , q J ( ~ , # l ~ ) ( q ) ] }  

A~a~ \ 

+ t3l 1 - v f  dq {r(ql ,  q)[(7~#n+~)(ql .... , q~, q) 

- (T,p("~)(ql ..... q,)(T1p(1))(q)]} 

which concludes the proof. �9 

Coro l l a ry .  If  the force has the scaling property and if p~ -r 0 the RE 
states are essentially parametrized by E, (Va), and the plasma parameter 7 ~ ,  
where 

7(v) = e2~(p~)( v-1)/~ 

Indeed by a scaling transformation we can always take p~ = 1 and the 
RE is thus only parametrized by the temperature/3 ~z~ = 7<~(1/e2), E, and (Va). 

The corollary extends to the state the scaling property that has already 
been established for the thermodynamic quantities. ~2~ 

3.3.  I n t e r p r e t a t i o n  of  E 

We conclude this section by a discussion of the interpretation of the 
parameter E and of the effective field Ep(x) of (18) assuming that the force 
satisfies (iv) of Proposition 2. 

We emphasize again that a RE state pE.(v~> is also a RE state with respect 
to the same parameter E and any translated sequence o f  regions (VA + a). 
Furthermore, the translated state rapE.(v~ is a RE state with respect to the 
same sequence (V~) and the new parameter Ea given by (27). 

Finally, (28) shows that Ep(x) transforms in a covariant manner under 
the translations, and E = ED(0), E~ = E, oD(0 ) = Eo( -a ) .  In particular, if the 
state is periodic, E~ is a periodic function ofa.  Thus the role of the parameters 
E and (Vx) in the search for periodic states can be described as follows: the 
asymptotic shape of the region Va will determine the shape of the fundamental 
cell, whereas E will locate the fundamental cell in space (up to the points a in 
the fundamental cell where the effective field E~ has the same value). 

Moreover, we should add that for Coulomb systems Ep(x) is the solution 
of  the electrostatic equation div Ep(x) = oJ~cp(x) with the boundary condition 

Ep(0) = E [or div E~(x) = ~ f g ( x  - y)cD(y ) dy, if we have the smeared 

Coulomb force (6)]. Thus Ep(x) is the electric field at point x in the infinite 
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sys tem.  These features can be illustrated on one-dimensional Coulomb 
systems. For these systems, one can construct explicitly RE states by means of 
thermodynamic limits of finite Gibbs states; these states have the following 
properties: 

(1) The one-dimensional jellium has a RE state which is nontrivially 
periodic with period p~7 ~ and invariant under inversion around the origin. (~na 
For this state, E = 0 by Proposition 4(ii), and 

s/ ED(x ) = lim [sign(x -- y )  -- s ign ( - -y ) ]co(y )  dy = 2 c~(y) dy 
L I -+ - oo 0 
L2 ~ 03 1 

(32) 

represents the electric field at the point x. (Here the limit is independent of the 
sequence of intervals [L1, L2] because in one space dimension, shape depen- 
dence is not possible !). 

(2) The one-dimensional, two-component Coulomb gas has a RE state 
which is invariant under translations and charge conjugation35'6~ This state is 
necessarily neutral and by Proposition 4(iii) it has zero effective field, 

E . ( x )  = E~_xo(O) = E A O )  = E = o 

It can be shown (~ that this system also has translation-invariant neutral RE 
states with nonzero electric field, i.e., with Eo(x) = E r O. 

By Proposition 4(ii) and 4(iv) it is clear that these states cannot be 
invariant under space inversion or charge conjugation. 

We shall see in the last section that the structure of the equilibrium 
equations imposes a bound on the possible values of E, the bound being 
independent of the state. This confirms that E is not an external applied 
electric field (which could be chosen arbitrarily), but the effective field in the 
system. 

4. LOCAL N E U T R A L I T Y  OF REGULAR E Q U I L I B R I U M  
STATES A N D  C O N S E Q U E N C E S  

It follows from Proposition 4 that any RE state that is ~Mnvariant, i.e., 
rap~ = PE for all a in R ~, must.satisfy 

cD(Lim ( dy [ F ( - a  - y ) -  F ( - y ) ] ' ~  = 0, VaER ~ (33) 
l aa~ m JV~ ) 

with c, = ~. ~p~ - PB, po = Pm(x~).  This yields immediately cp = 0, i.e., the 
neutrality of the state, as soon as the force satisfies the condition 

Lira ( dy [ F ( - a  - y )  - F ( - y ) ]  va 0 or does not exist (34) 
7,.+~ d v a  
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We notice at once that  a necessary condit ion for us to be able to draw a 
conclusion abou t  neutrali ty is that  the force decreases slowly enough at 
infinity; in part icular,  if the force is 5~ 1, the limit (34) is zero and we cannot  
draw a conclusion. In  fact, we shall see that  the condit ion (34) is satisfied as 
soon as the force decreases at  infinity like the Cou lomb  force or slower. 

The next proposi t ion shows that  this result remains valid for states that  
are not  necessarily RMnvariant .  

Proposition 6. Assume that  the force satisfies the following conditions 

f ( x )  = F'(x) + F"(x) (35) 

with F'(x) in ~ 1  and F"(x) = - V r  r o f  class C 2, and 

Lira ;t'g"(a2) = d(2), 2 = x/lx[, 7' /> 0 (36) 

where  d(2) is not  identically zero, 

lxi'+llVF'~(x)[ = 0(1) as Ixl-+oo (37) 

(i) Any R~-invariant, RE state pE,Vo is locally neutral, i.e., 

c P = Z ~ P ~  A~lim ]@] fA cD(y) dy = O 

if the force is such tha t  7' ~< v - 1 and satisfies 

o ixl, ds ~ 0 (38) 

for  some a in ~ ,  where ~Vo is the boundary  of  Vo. 
(ii) Let  Y be a discrete subgroup of  the translat ion group ~ generated 

by {el,..., e~} and Ao be the unit  cell based on (e~}. Any regular equil ibrium 
state PE.Ao invariant  under  3-- is locally neutral, i.e., 

g~ = -~ofA cp(y) dy = lira . ! . fA cp(y) dy = O 

if  the force is such that  v - 2 < 7' ~< v - 1 and satisfies the condit ion (38) for  
some a in J - .  

Corollary 1. (i) The  R~-invariant RE states PE.Vo of  Cou lomb  systems 
are locally neutral.  

(ii) Assume that  7' ~< v - 1 and tha t  the force is asymptot ical ly  radial 
[d(2) = cst 2]. Any N~-invariant RE state p~;Vo with V0 convex is neutral.  

Proof ofCorollorg I. This is a s t ra ightforward consequence of  the 
proposi t ion.  To  have (38) it is sufficient to show in bo th  cases tha t  

v o ~ d S ~  r 0 for some a = 1,...,v (39) 
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But in the Coulomb case, y = v - 1 and we have that 

fCVo 2 ixyV_l.ds = ~,~ # 0 

for any Vo, where oJ~ is the surface of a sphere of radius 1 in ~ .  
In the second case Vo convex implies 2.ds >i 0 on 0V0 and therefore 

again f~Vo (x/Ixl ' )"ts  > O. �9 

Corollary 2. Assume that the force is asymptotically radial, and let 
P~.Vo be an RMnvariant RE state with V0 convex. Then pE.Vo is also a RE 
state with respect to any sequence (Vx'). 

Proof of Corollory 2. If  y > v - 1, the result follows from Proposition 
l(ii). 

If  y ~< v - 1, the state is neutral by Corollary 1 above. Therefore 

fv  [F(x - y)  - F ( - y ) ]co (y  ) dy = 0 
A" 

for any sequence (Vz'). The term containing the (Va') dependence in (19) 
drops out and thus PE.Vo is a solution of (19) for any sequence (Va'). [ ]  

Corollary 2 shows that irrespective of the nature of the force, an R ~- 
invariant RE state is always shape independent, as is intuitively expected. 

Corollary 3. Consider a system with 08 = 0 and all charges of the 
same sign. Under the conditions of Proposition 6, the system has no RE states 
with nonvanishing density. 

Indeed G = ~ ~G = 0 implies G = 0, V~ ~ Z. [ ]  

In particular, the corollary shows that there does not exist ~ or Y -  
invariant equilibrium states for one-component systems with pB = 0 if the 
force decreases like the Coulomb force or slower. 

The proof  of Proposition 6 is based on two results which we shall now 
establish. 

I.emma 2. Let Y be a discrete subgroup of the translation group ~ 
generated by {el,..., G}, and (V a) be a sequence of volumes defined as the 
union of unit cells 

A ~ = ( x +  ~=l~n~e~; x~A0,  n~77 ~} 

If  the force satisfies the conditions 

Ixl~-llVG(x)] = o(l) as Ix[-+oo (40) 
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and 

lira i [F~(-a - y) - F~( -y ) ]  dy ~ 0 or does not exist 
(41) ~+ co Jv~ for some a in .Y- 

then any regular equilibrium state pE,(v~) that is invariant under J"  is locally 
neutral, i.e., 

that 

On = lim ~A[ /A co(y) dy = 1 /A ;'++ ~ o C~ dy = 0 

Proof. Since r~pE,<v~> = pE.(v~) for a in J,, it follows from Proposition 4 

l" 
lim ] [F,~(-a - y) - F.( -y)]c~(y)  dy = 0 (42) 
~ m  J V A  

Let us denote by ~o and ff..n the average charge density and the average 
force in An: 

1s ,s 
co = T-~o[ cD(y ) dy, ~ ,~  = ~ g . ( - y )  dy 

o ' n 

Since ep(y + a) = cD(y), a ~ Y,, we have 

fvz [F~(-a - y) -- F~(-y)]eo(y ) 

= ?o f  v [ F . ( - a  - y) - F . ( - y ) ]  dy 
h 

+ ~ fA [ F . ( - y )  - F~,,~]c~(y) dy 
A n  ~ (Vh  + a)  n 

fA [ F . ( - y )  - ff...lco(y ) dy 
An c Vh n 

where Va + a = { x +  a ;x+Va} .  
We shall show that condition 

two terms of (43) tends to zero as 

(43) 

(40) implies that the difference of the last 
A -+ oo; from (42) it thus follows that 

~~ lim fv~ [F~(-a - y) - F g - y ) ]  dy)  = 

which concludes the proof  of this lemma. 
To show that the difference of the last two terms of (43) tends to zero as 

A -+ ~ ,  we note that this difference is majorized by 

llcoll~ [ [F.(--y)  -- ft..n[ dy (44) 
Ancgh~(W h + a )  d~n  
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But if x, y EA. c Va A (VA + a) we have for h large enough as in (24) 

IF~(y) - F,(x)l ~< cst A/(Rx-) ~-~ 
where Ra- is the radius of the ball B~- c Vx, and also 

IF~(-y)  - L.~] < ~ [F~ ( -y )  - F~( -x ) ]  dx .< cst (R _)~_ I 
n 

Thus 

f~ ]F~(-y)  - L . . [  dy ~ cst A [(V~ + a) ~ g~ I A~v~(v~+~ ~ (RA-)~-z ~< cst A 

(45) 
where we have used the properties (b) and (c) of the sequence (Vx) as in (26) 
of part (iv) of Proposition 2. The result follows from the fact that A can be 
chosen arbitrarily small. �9 

It just remains to study the forces for which condition (41) will be satis- 
fied, i.e., for what forces it is possible to prove local neutrality. 

I.emma 3. Let (V~) = ({~x; x ~ V0}) be a sequence of volumes ob- 
tained by dilatation of Vo. 

(i) If  the force satisfies conditions (35)-(37) of Proposition 6, then 

- -  d s u  fv fe d(2).a lim h y-~+I [F'~(y + a) - F~(y)] dy = ]x]' 
h~ co 2, VO 

(ii) If in addition (38) is satisfied, then 

/ -  
l ira I [ F ( - a - y ) -  F ( - y ) ] d y  
h--* oo "J V A 

{ ! 8  ads i f y  > v - 1 
d ( - 2 ) .  

= Vo ~ i f y = v -  1 

i f y <  v -  1 

Proof. (i) Using successively Gauss' theorem, a scaling transformation, 
and the Taylor theorem, we have 

hY-v+Z fv [F~(y + a) - F~(y)] dy 
h 

= -h'-~+Zfv [(a~r + a) - (O~r dy 
h 

= -h ' -~+~fo  [r + a) - c}(y)lds. 
VA 

= -A'fe [r + a) - r 
VO 

= h~fe [a.F'(Ax+ Oa)]ds~, 0 ~ 0 <<. 1 
Vo 

(46) 
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Since x e 8 Vo is nonzero, we can take A large enough to replace the force in 
(46) by its asymptotic behavior. According to (36) and (37), we have 

A~F,~(Ax + Oa) = ;~Y f,~(Ax) 
'" I x l '  § o(1) 

and thus the result follows by dominated convergence. 
(ii) The proof is immediate using (i) and the fact that F'(x) is ~ i .  [ ]  

Lemmas 2 and 3 give the proof of Proposition 6. 

Romork 1. The equilibrium equation (19) imposes the neutrality of the 
state only if the force decreases as the Coulomb force or slower. If  the force 
decreases faster than Coulomb, nothing can be concluded about neutrality. 

Romork 2. It should be stressed that condition (40) is only necessary for 
~'-invariant states which are not RV-invariant. For such states condition (40) 
imposes that the force should decrease faster than 1/Ix] v-2. 

Romork 3. Part (i) of Proposition 6 remains valid under the weaker 
condition Ixl'iVFo(x)l = o(1)instead of (37). 

To conclude the discussion of neutrality, we shall now prove a stronger 
result for one-dimensional systems: namely that any regular equilibrium 
state is locally neutral if the force does not vanish at infinity. 

P r o p o s i t i o n  7. Consider a one-dimensional system with the two-body 
force 

F(x) = d s i g n x +  q)(x) with q~e~ l ,  d r  

Then any regular equilibrium state satisfying the conditions: 

(i) fdy ]p~2)(x, y)] is uniformly bounded 

(ii) LimL~ ~(1/L) f~ dy cp(y) = 8p exists 

is either locally neutral, i.e., ga = 0, or the particles have zero charge density, 
i.e., O D + pB = 0. 

Proof. In this case Eq. (19) yields 

8-~ P(1)(xr = fiEo(x)[c~(x) + PB] 

+ f i f  dy F(x - y) E r y8) 
crO 

with 

E (x) = dy + j - y)  - + 
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Apply (1/L 2) f~ dx to both sides of  this equation and take the limit L -+ oo; 

the second term on the right-hand side tends to zero because of (i) and we 
obtain 

if] 0 = lira ED(x)[co(x) + 081 dx 
L ~ m - ~  

fo } = lira [co(x) + OB] 2dc~(y) dy dx 
L~c~ L 2  

L~~176 1 L  2 fodY lim {[L fo cD(x) dx; 2 L * = +-z-~ffBfo dx cp(y)} 

which gives, using l 'Hospital 's  theorem, 

lfo 0 = 8p 2 + pB lira cp(y) dy = 8o(8 ~ + PB) [] 
L~o~ ~. 

Romark. For the one-dimensional jellium this theorem describes two 
situations: either the density of  charge 8p is zero or the density of particles 
vanishes. 

5. THE C A N O N I C A L  S U M  RULES 

In this section, we show that if the force has infinite range and if the 
state has a rate of clustering which is faster than the decrease of  the force, then 
the correlation functions obey a new hierarchy of constraints. These con- 
straints link the n-point to the (n + 1)-point correlation functions and we call 
them the canonical sum rules. The interpretation and some consequences of  
the canonical sum rules will be discussed in the last section. The simplest sum 
rule is the following relation between the one- and the two-point correlation 
functions: 

0 = alp(1)(Xlaa) + ~ f  cr[pr xe) - p(1)(xl%)p(1)(xa)] dx (47) 

or in a more condensed notation 

azp(l)(ql) + f dq app)(qz, q) = 0 (48) 

where p(r2)(ql, q2) is the two-point truncated correlation function. 
The general form of the sum rule is 

0 = ~J (ql ..... q~) 
= 

( dq (r[p ("+ Z)(q~ ..... q,~, q) - p(Z)(q)tCn)(q~ ,..., q.)] (49) + 
d 
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with n > 1. This relation can also be writ ten in terms of  the t runcated corre- 
lation funct ions 

(n) aj pr (ql .... ,q~) + dqap~r " +l,(q~ ..... q~,q)  = 0 (50) 

The equivalence between (49) and (50) is shown in the Appendix.  
We establish now that, under  some addit ional  assumptions  on the 

clustering, a RE state has to obey the canonical sum rules. The precise state- 
ment  is formula ted  in Proposi t ion 8 and the p roo f  is based on an asymptot ic  
analysis o f  the B B G K Y  hierarchy (19) as Ixzl ---> oo. We shall then give an 
extension of  Proposi t ion 8 which is valid for infinite-range but  integrable 
potentials.  

Proposition 8. Assume that  the two-body force F(x)  satisfies the 
condit ions:  

(a l )  l i m ~  ATF(,~2) = d(2), 2 = x/lx], 7 > O, where d(2) is a bounded  
funct ion of  2 which is not  identically zero. 

(a2) IxlqVF(x)l = o(1), [ x l - + ~ o .  
Then any RE state pE,<v~) satisfying conditions (b) and (c) stated below 

obeys the sum rules (49) and (50). 
(b l )  Eo(x) is uniformly bounded  in R v. 

(b2) There  exist r > 0 and O0 > 0 such that  fB<x.r~ P<~(Y~) dy > Po for 

]x I large enough, where B(x, r) is the ball of  center x and radius r. 
The  correlat ion functions p("~(q~ .... , q,) of  Pz.<vA> have the following 

clustering propert ies.  
(cl)  For  x2 fixed 

= ,fo(1/Ix l') if  7 > v 
p~2'(xl~, x 2 ~ )   O(l/ixll +  ) if 7 ~< v, �9 > 0 

(c2) For  n /> 3 and xa,.. . ,  x ,  fixed 

= fo(1/Ixl] ~) i f  7 > v 

uni formly  in x2, and 

(c3) lim ( lp~(xlcq,  x2%, xa% ..... x~a,~)j dxl = O, n >1 3 
Ix2 l~m d 

Romorks.  Condi t ion (bl) ,  i.e., the effective field is uniformly bounded,  
is obviously verified if the state is periodic:  then Eo(x ) is a bounded,  periodic 
function of  x;  (b2) means that  the local density of  particles does not  vanish as 
]x[ ~ oo. Again (b2) is true if the state is periodic (choose r large enough 
compared  to a linear dimension of  the fundamenta l  cell). Condit ions (cl)  and 
(c2) ensure that  the clustering is faster than the decrease of  the force when 
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> v, and the integrability of the truncated correlation functions when 
~ < v .  

To establish the proposition, we shall take the following steps: 

(i) We express the correlation functions occurring in the integral of Eq. 
(19) in terms of the truncated ones (see Lemma 4 below). 

(ii) We integrate the variable x~ in both parts of the BBGKY equation 
(19) on the ball B(~fi, r), where fi is chosen such that d(fi) -r 0, ~ is large 
enough, and r is given in assumption (b2). [With this, we eliminate the 
derivative on the right-hand side of Eq. (19); no assumption has been made 
here on the decrease of the derivatives of the truncated correlation functions.] 

(iii) We multiply the whole equation by h ~ and take the limit ~ ~ oo, 
To abbreviate the notation we write simply for n /> 2 

p(n>(qlq2 "'" q,,) = p(ql Q) (51) 

p<'~ + ~)(qqlq2 "" q,~) = p(qq~ Q) (52) 

where Q is the set of arguments (q2 "'" q,). 

kemma 4. 

P(qq~ Q) - p(q)p(qlQ) 

= pr(qq~)p(O) + p(q~)[p(qQ) - p(q)p(Q)] + R(qqlQ) (53) 

with 

R(qqlQ) = ~ pT'(qQ1)pT(qIQ2)p(Q\Q1Q2) 
QI,Q2 = Q 

+ ~ PT(qqlQ~)p(Q\Q1) (54) 
Z (=Ql c Q  

The sums in (54) run on the subsets Q1, Q2 of Q as indicated and Q\Q1Q2 is 
the difference of the sets Q and Q1 t_; Q2 [p(~) = 1]. The proof is given in the 
Appendix. 

The explicit form of R(qq~ Q) will be irrelevant in the following. The only 
point that matters is that R(qql Q) is a finite sum of truncated functions, 
where the arguments q or q~. [or the pair (qql)] occur always in conjunction 
with some other argument qj e Q , j  = 2,... n, so that the clustering properties 
(el), (c2), and (c3) apply to the terms of R(qqzQ). 

We insert the expression (53) given in Lemma 4 into the last integral on 
the right-hand side of Eq. (19) (with n > 2). 

Using the notation introduced in (52), we get 

/3-1 V1 [P(ql Q) - o(q~)p(Q)] (55) 

= aiED(x~)[p(q~Q)- p(q~)p(Q)] (55a) 
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+ ~ F(qlqj)p(qlQ) (55b) 
] = 2  

p(ql) f dq r(qlq)[p(qQ) - p(q)p(Q)] (55c) + 

f dq F(qlq)R(qqz Q) (55d) + 

In getting (55), we have also used Eq. (19) in the case n = 2 to express the 
integral on the two-point truncated correlation function as 

fi f F(qiq)p~(q~q) dq = Vlp(q~) - ~rzED(xl)p(qa) 

We study now the behavior of the various terms of Eq. (55) as ]x~[ --> oo and 
show that (55b) and (55c) will give rise to the sum rules. 

More precisely, we set 

xl = Aft + y, [fil = 1 (56) 

with fi such that d(fi) # 0 and l Y [ ~< r. Then we multiply Eq. (55) by A y and 
determine the asymptotic behavior of the terms (55a)-(55d) as A-+oo, 
keeping fi and y fixed. 

Finally, we perform the integration over the ball B(hfi, r) as indicated in 
(ii) and take the limit h ---> oe. 

To simplify the discussion of Eq. (55), we define the function 

go(x) = p(x~, Q) - p(xcr)p(Q) (57) 

the arguments in Q being held fixed (Q -r ~).  
Notice that the clustering assumptions (cl) and (c2) imply 

go(x) = fo(a/Ix?) ,  7 > Ix l -+  oo (58a) 
koO/lxiv+'), 7 <. 

In particular, if xz = Aft + y, ]9] = i, 

= fo(1/h~), ~ > v A--+ oo (58b) 
g l(x ) ko(1/ '9, <.,  

uniformly with respect to y for [y ] ~< r. 
We proceed now to the analysis of the terms (55a)-(55d). 
Term (55a). The term (55a) reads h~Ep(xz)g~(xl), xz = A~ + y. Since, 

by assumption (bl), ED(x ) remains bounded as [x[ ~ o% (58b) implies 
obviously that this term tends to zero uniformly with respect to y, [y [ ~< r, 
as A--> ~ .  
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Term (55b). Adding and subtracting ~2=2 F~(q,qj)p(qz)p(Q) in (55b), we 
write (55b) in the fo rm 

~3̀ " ~ ~rjF(xl - xj)p(x~%)p(Q) + cr~3̀ ~ ~ F(xl - xj)g~(x~) (59) 
j = 2  j = 2  

with x~ = 3`2 + y. 
F r o m  the asymptot ic  behavior  of  the force, we deduce that  for fixed x, 

F(xl - x) = F(3`2 + y - x) = F(3`2) + o(1/3` ~) 

as ~ --+ oo. 
By (58b) and (61), the second te rm of  (59) is o(1/3` ~) and vanishes as 

3, -+  oo. Thus  (62) is the asymptot ic  behavior  of  the te rm (55b) as 3̀  -+  oo. 
Term (55c). The  te rm (55c) is 

crlp(xlcrl)k' ~ crf F(xl - x)g~(x) dx, xl = 3̀ 2 + (63) Y 

We show in the Appendix  the following l emma:  

kemrna 5. Under  the assumptions  (a l )  and (a2) on F(x) and (58) on the 
function go(x), one has 

3̀~ [ F(3`2 + y - x)go(x) dx = d(2) [ g~(x) dx (64) tim 
d d 

uniformly with respect  to y, ]y I ~< r. 
Therefore  (63) converges to 

[crld(2)p(A2 + y, or1) ] ~ cx f go(x)dx 

y, cr l)][  dq c~[p(qQ) - p(q)p(Q)] (65) [~ld(2)p(3`2 + 
d 

as 3`--+00. 

and thus 

lira 3`~F(3`2 + y - x) = d(2) (60) 
X ~ c o  

3`VF(3`2 + y - x) = O(1), 3`--+ oo (61) 

uniformly with respect  to y, ]Yl ~< r. 
Since p(3`x, (r) is uni formly bounded  in 3 ,̀ (60) implies that  the first term of  

(59) converges to 

ej p(Q)[c~ld(2)p(3`2 + y, ~1)1 (62) 
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that 
Term (55d). By a slight extension of Lemma 5, one shows (see Appendix) 

r 
dx 

~< cst ~ e lim f ]R(xe, xlcrz, Q)I dx, xl = hfi + y (66) 
tr A ~ o o  

In view of the structure of R(qqiQ) (see Lemma 4) and the assumptions 
(cl)-(c3) on the clustering, this last limit is zero. Indeed for the terms in 
R(qqzQ) that involve products pr(qQ')pr(qzQ") the limit is obviously zero. 
By assumption (c3), the limit is also zero for the terms in R(qqzQ) that involve 
pr(qqiQ'). 

We now perform the integration of Eq. (55) over the ball B(h~, r), i.e., 
over the variable y in the domain I Y] ~< r. Since the contributions of the 
terms (55a) and (55d) tend to zero uniformly in y, I Y ] <~ r, as h -+ oe, so do 
the corresponding integrals. With the asymptotic behavior (62) and (65) 
(which are also uniform in y), we are left with 

( Q~=2crs)p(Q) + ~ dqcr[P(qQ)- P(q)p(Q)]} 

p(Aa + y, crz) dy x (rld(~) B(o,r) 

= 5 - ~ , ~ (  Vgo(x) dx as A-+ oo (67) 
~B(~.~,r) 

Performing the integration on the right-hand side of (67), we get with (58b) 
again 

h'( Vg~(x)dx = ,~'[" g~(aa + y ) d y  = laB(O, r)l • o(1) 
JB (hCt,r) dSB(O,r) 

Therefore the right-hand side of (67) tends to zero as A -+ oe. Since d(fi) r 0 
and the state has a nonzero local density by assumption (b2), we conclude 
that 

c b p(Q) + dq a[p(qQ) - p(q)p(Q)] = 0 

Q = (q2,..., q,), n >1 2 

These are precisely the sum rules (49). �9 

Coro l l a ry .  The equilibrium states of one-dimensional Coulomb systems 
(one- and two-component plasmas) constructed in Ref. 5 satisfy the canonical 
sum rules. 

Indeed the equilibrium states obtained in Ref. 5 are RE states with 
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exponential clustering; all the assumptions of Proposition 8 are therefore 
satisfied. �9 

Remark. For Coulomb systems, in any dimension we see that any peri- 
odic RE state will satisfy the canonical sum rules as soon as"  screening" occurs, 
i.e., as soon as (cl)-(c3) are satisfied (with ~, = v - 1). 

The next proposition applies to infinite-range integrable potentials. The 
proposition states that with additional assumptions on the derivatives of the 
truncated functions the sum rules must hold if the decay of the truncated 
functions is faster than the decay of the potential. 

Proposition 9. Assume that the force F(x) is of the form F(x) = 
-V~(x) with q5 integrable and that F(x) satisfies conditions (al) and (a2) of 
Proposition 8 with ~, > u + 1. Then any equilibrium state satisfying the 
following conditions obeys the sum rules (49): 

(b'l) Ep(x) = 0 and (b2) as in Proposition 8. 
(c'l) For x2 fixed 

vlp~=)(xl~l, x=~) = o(l/Ixl  I v) 

(c'2) For n >/ 3 and x3 ..... x ,  fixed 

uniformly in x2, and (c3) as in Proposition 8. 

Remark. Since here the force is integrable, p is shape independent. 
Notice that the effective field will necessarily be zero if p is Euclidean- 
invariant. 

Conditions (c' 1) and (c'2) give an upper bound on the rate of decrease of 
the derivatives of the truncated functions. Conditions (c'l) and (c'2) are 
stronger than (cl) and (c2) in the sense that now fast oscillations in the 
clustering are not allowed. 

For the proof we proceed exactly as in Proposition 8. 
We set xa = A• + y and examine the asymptotic behavior of the terms 

of Eqs. (55). Now (c'l) and (c'2) imply 

and therefore 

uniformly in y, ]y ] ~< r. 

Vg~(x) = o(~/lxl'), Ixl ~oo (68) 

g~(x) = o(1/Ixl ~-1) (69) 

g~(xl) = oO/A'-  1) (7o) 
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The term (55a) is zero by assumption. The term (55b) converges again to 
the expression (62). Since Lemma 5 still holds true (see Appendix), (58c) 
converges to (65) and (55d) vanishes. Therefore we get (67), and with (68) 

A~( dx Vg~(x) = IB(0, r)l • o(1) 
d~ B(a~2,r) 

From this the sum rules follow as in Proposition 8. �9 

6. C O N S E Q U E N C E S  OF T H E  S U M  R U L E S  

The most important feature of a state that obeys the sum rules is that the 
fluctuations of the charge are not normal. Let QA be the observable charge of 
the particles in the region A 

QA = ~, ajXa(Xj), XA(x) = f 1' x ~ A 
x,~a 0, x C A  (71) 

We have 

< QA> = fa dxl ~ alp(1)(xl~h) al 
(72) 

~QA2) : fA MX1 fA dX2 ~ O'IG2tO(2)(X10"I' X20"2) -}- fA dxl ~ O'12p(1)(XlO'I) 
. . . . .  1 (73) 

The fluctuations have a normal behavior if ( [ Q A -  (QA)] 2) = 
(QA 2) - (QA) 2 is extensive with A as A -+ [~. The next proposition shows 
that this is not the case as soon as the sum rules hold. 

P r o p o s i t i o n  10. Let p be a RE state invariant under a discrete sub- 
group 3-  of  the translation group and A a sequence of volumes defined as 
union of N unit cells A~, 

A ~ = { x +  a~; x c A 0 ,  a ~ - }  

I f  the first sum rule (1) holds, then 

Lira 1 A-+~ ]-~ ([QA - <QA>]2> = 0 

ProoL We have f rom (72) and (73) 

1 lf s ]A-- 7 [<QA2> - (Qa> 23 = ~ dxl dx2 ~ cq%p(Tm(X~Ch, x2%) 
G1G 2 

-F ~ dx i ~ al2p(i)(xiai) (74) 
G1 
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Introducingf(x~x2) = >~o:~ O'lO'2D(2)(XlO'l, X20"2) , we have 

1 dxl fA f(xl ,  x2) IAIf~ dx~ 
1 

- Nlko, dx2f(xl,X2)XA(X2) 

- NIAo I dx~ dx2 f(xl + a., XZ)XA(X2) 
o 

i 
= ~ dxl dx2 f (x l , x2)~  E X.(x2 + a.) 

0 a n e A  

Where we have used the periodicity of the 
f(x~ + a~, x2 + a~) if an ~ F ,  to obtain (75). 

Now 

state, 

and for fixed x 

1 1 

a n n a  - x 

(75) 

i.e., f(xl, x2) = 

1 A~. 1 ~< t A A ( A -  x)l + o(1)-->O as IAI--->oo 
o :  -x> IAI 

Sincef(xl ,  x2) is integrable in x= it follows by dominated convergence that 

a ~ ,  -~] dxl dx2f(xl, xz) = ~o] dxl dx2f(xl, x2) 
0 v 

(76) 

Moreover, 

Lim ~-~ fA dxi p(1)(XiGl) = ~-~o~ f A dXI D(1)(XIGI) (77) A~v 0 

Combining (74), (76), and (77), we get 

*~a~Lim ,!,IAI [<Q.2> _ (Q.>21 = ~1 fzx dxx ~__ GI [(ylp(1)(XI(Yl) 
0 0"i 

v ~2 

But the right-hand side of (78) is zero by the first sum rule. [] 

This result has several interesting implications: 

1. Consider a several-component Coulomb system with pB = O. Then QA 
is the total electric charge in A. If  "screening" occurs as is expected, Q,  
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cannot have normal fluctuations. Other properties of the charge fluctuations 
and of their connections with the sum rules will be discussed in Ref. 10. It is 
shown in Ref. 10 that, under suitable assumptions on the clustering, the 
charge fluctuations < QA 2> - < QA> 2 are necessarily of the order of the surface 
IoA] of ]A[. Moreover, if {)A = ( Q A -  <QA>)/I~A] 1/2 is the normalized 
charge observable, the probability distribution for QA is again Gaussian as 
]A] -+ oo in two or three space dimensions. In one dimension, [0A l = 1, and 
the limiting probability distribution of the charge is discrete and can be 
found explicitly. 

2. In a one-component system with r = 1 the observable QA coincides 
with the particle number NA in A and 

x = lira 1 ~ ~ <[N~ - <NA>p> 

represents the "bulk  compressibility". Therefore, if the sum rules are satisfied, 
x = O .  

(a) Let us then consider first the "jel l ium" (p~ > 0, Coulomb force). 
We know by the corollary of Proposition 8 that in one dimension the sum 
rules are satisfied and thus X = 0. In any dimension the bulk compressibility 
X will also be zero for any periodic RE state as soon as screening occurs. 

Heuristically this result can be understood in relation to the fact that the 
long-range force imposes local neutrality, i.e., the local density t7 = 

(1/] A0 [) f~o dx  p~l)(x) is equal to p~. Therefore, for a given PB the system appears 

to be incompressible, and thus X = 0. 
(b) In the case of a one-component  f lu id  of particles interacting with an 

integrable potential (and PB = 0), Propositions 8 and 9 provide lower bounds 
on the rate of decrease of the truncated correlation functions. Indeed if we 
know that the particle fluctuations are normal, i.e., 

X r  

the assumptions of Propositions 8 and 9 cannot hold true. Consider for 
instance an equilibrium state of a system of particles interacting with a stable, 
regular pair potential ~(x), where ~(x) behaves as 1/Ixl ~-~ (~, - 1 > v) as 
]x[ ---> or. The correlation functions obey the Kirkwood-Saltzbourg equation 
and we know that at sufficiently high temperature the compressibility is not 
zero.C a ) 

Moreover, by the equivalence of equilibrium equations, (~) the correlation 
functions are also solutions of the BBGKY hierarchy. Therefore, if the force 
is as in Proposition 8 [resp., Proposition 9], we conclude that (cl) and (c2) 
[resp., (c'l) and (c'2)] cannot hold for the two- and three-point functions. 
(Otherwise, the first sum rule would imply X = 0.) 

Proposition 8 implies then that p(2) and O~ 3) have to decrease as the force, 
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i.e., as 1/Ix]' or slower as ]x] --,'- oo (assuming 0(2) and p(r a) have the same asymp- 
totic behavior). In this connection, we recall the result of  Duneau and 
Souillard (13) which says that the truncated correlation functions have to 
decrease faster than 1/fx] (~-1~/2 

I f  we have the further information that ]x] VpT = O(or) on the decrease 
of  the derivatives of  the truncated functions, we use Proposition 9 to deduce 
that Or cannot decrease faster than the potential itself as Ix I -+ oo; on the 
other hand, it has been shown by Groeneveld (1~ that p(r 2~ has to decrease as 
the potential or faster (in the domain of analyticity). Using this result, we 
conclude therefore that p(r 2~ decreases at infinity exactly like the potential (in 
the domain of analyticity). 

Let us recall that a similar result has been derived for ferromagnetic 
lattice systems at large magnetic field by Iagolnitzer and SouillardJ 14~ 

3. The sum rules impose an upper bound on the possible values of  the 
internal field. Consider a two-component system with a = + 1 and PB = 0 
which is translation invariant and neutral. Then 

p(1)(x~) = p, ~ = + 1, e~ = 0 

p(2)(Xla 1 x2G2 ) = (2) (x~ (2) i x , p , , ~ ,  ~ - x~)  = p ~ t  ~ - x~) 

The first B B G K Y  equation yields 

E = (l/p) f dx F(x) [p~)_ (x) - p~)+ (x)] (79) 

Assume that we have 

p<+~)_(x) > o%(x) (80) 

meaning that, given a positive charge at the origin, it is more likely to find a 
negative charge at x than another positivecharge. Relation (80) is true for the 
one-dimensional Coulomb gas ~6~ and it is likely to hold whenever screening 
o c c u r s .  

Relations (79) and (80) and the first sum rule imply 

Iel suplf(x)l (81) 
X 

I f  the force is bounded, (81) provides an upper bound for the possible values 
of  E which is independent of  the state. (81) can be interpreted as follows. 
Consider that the state has been obtained as the thermodynamic limit of  
Gibbs states with some boundary conditions or in external fields. Then, 
because of the occurrence of screening, the internal field cannot exceed a 
fixed value, no matter  how strong the applied external field or the effects of  
the boundary conditions. An example of such a situation can be found in the 
one-dimensional Coulomb system. (9) 



228 Ch. Gruber, Ch. Lugrin, and Ph. A. Martin 

To conclude this section, we shall now show that the canonical sum rules 
are always satisfied in the canonical ensemble at finite volume. 

Consider indeed a finite system consisting of n~ ..... n u particles of 
charges ~(1),..., ~(m in a box A. We denote by x} x), j = 1 .... , n~, I = 1,..., N, the 
coordinates of  the particles of  charge G ~. By definition, the correlation func- 
tions are given by 

p ~ ( x i l )  ,,(~). . xIN) ,,(~)~ 
�9 "" ~Icl ' """ ' "'" ~;~N ) 

= - . . .  Z~. ~ # x ? ) . . .  ~ . ( 1 ) .  . 

and we have 

I = 1  

N 

= E ~(~)[(n, - ki)pA(... ; x]),..., ~k,'a)'...), _ nipA(...; ~1"/'),..., x(J~;...)] 
1=1  

N 

= _ ~ ,~(I'k,OA(... ; . . .  ; . . . 1  
I = 1  

i.e., 

Xk~k~ X/cO'k)] 5 ' ' ' '  

- -  - ~ p ~ ) ( x l ~  . . . . .  x ~ , ~ )  

which are precisely the sum rules. 
Although the sum rules hold trivially for finite systems irrespective of the 

nature of the forces, the same sum rules will not be true in general in infinite 
systems. For instance, if we take the thermodynamic limit of  a system of 
noninteracting particles, we get 

lim p~>(x, ~) = p~l) 

lim p~)(x~r .... , Xk~k) = ~ p~l) 

Obviously these correlation functions do not satisfy the sum rules. 
More generally, the correlation functions of an infinite system of a single 

kind of particle interacting with short-range forces are not expected to satisfy 
the sum rules, on the physical grounds that the compressibility should not 
vanish, as discussed at the beginning of the section. 

On the other hand, it is also clear that when the force has finite range and 
the truncated correlation functions have infinite range (say exponential decay), 
Propositions 8 and 9 are not applicable. 
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However, the sum rules are an essential characteristic of a system with 
long-range forces. In particular, any approximation scheme for the treatment 
of Coulomb systems based on the BBGKY hierarchy should be consistent 
with the sum rules. Such approximations have already been used in the 
literature under the name "convolution approximation."(l~) 

A P P E N D I X  

Proof  of  Lemma 1 

(i) We notice first that when the sequences (Vx) satisfy condition (b), 
(Vx 1) ~1 (Vx 2) if and only if there exist c' and c" such that 

c' <~ Ry, a/Rf,  x <<. c", 0 < c', c" < oo (A1) 

R2a are the radii of the internal balls associated with (V/). 
Indeed, by (b) we have 1 ~< R],x/Ry,  x <~ 32, 1 <~ R[,z /R[ ,a  ~< 31. Since 

Vx 1 /x Vz 2 c B2,~, u B2+a and Vx ~ n Va 2 ~ Bf ,  a n Bs we get 

]V~ ~ Z~ V~2I ( sup (R~ ,  R~.~)~ ,, 
}V~ ~ n Vx2t ~< \inf(Ri-,~, Rf ,  x) ] <~ (sup{31, 32, 32c , 3~/c'}) ~ 

showing that (A1) implies the relation al. 
Conversely, assume first that Rf ,  a/RLa >1 1; then, either Ry, a ~< RL~, 

giving Rf ,~ /RL~  <<. R~,a/RL~ <~ 31, or R~a > R + which gives 
, l,h, 

[ v ~ n  v~[  >/ (R~+,~) ~ /> \Rr, A ~--z- 1 
Therefore, 

( IY; A Y 21 l,v 

Inverting the roles of 1 and 2, we obtain in all cases the inequality 

iv ln ) l+lvln  ] 
and thus the relation ~i implies the inequality (A1). 

(ii) The relation c~ 1 is an equivalence relation; indeed it is sufficient to 
verify the transitivity. Writing R L ~ / R L a  = (Ry, a/Ry,~)R~,~/RLa , the transi- 
tivity follows obviously from (A1). 

(iii) The relation ~2 is an equivalence relation; again it is sufficient to 
prove the transitivity. Notice that 

[v~ ~ zx v~31 ~< ]v~ ~ zx V#l + I v~ 2 zx V~?l 
from which it follows that 

I v~ lzx V~l I v A A  v~[ I v~ ~zx v~3[ 
Ivy'  n v~'l ~< I v~ 1 n V#l + ]v~ 2 n v~'l 



230 Ch. Gruber, Ch. Lugrin, and Ph. A. Martin 

This inequality concludes the proof, since l ima.s([  Va 1 Zx Va21/[ ga ~ ~3 Vh31) 
= 0 implies 

~_~ [v~ ~ n V~l lv  l v  ~ _- ~ r ~  V~l = 0 

(iv) The relation % is trivially an equivalence relation. 
(v) Finally, we show that if the sequences of volumes satisfy the condi- 

tion (a) [van Hove], then 
~3 => 0:2 ::~ (~1 

If  V~ 2 = Va 1 + a with a ~ R ~, then for h large enough so that ]V~ ~1] < ]Val, 
we have 

IV~ zx (V~ + a)l 2lvA~l 
Iv~c~ (v~ + a)l IV~l - IvA~ 

Since V~ ---> R v in the sense of van Hove, we have 

}im IV~ zx (V~ + a)l = o 
IVan (v~ + a)l 

i.e., % => ~2. 

~2 ~ ~1 is obvious. �9 

P r o o f  of  the Equivalence Between (49) and (50) 

(i) Let us show that (49) implies (50). By definition of the truncated 
functions, 

t~ 

p~n>(Q) = ~ ( _  1)~-~(k _ 1)! 1--[ P(Q~) 
.2 a=l 

where ~a  = ~Q=u~=l~ means "summation over all partitions of Q into k 
disjoint subsets, k = 1, 2,..., n." We thus have, using (49), 

(r I ~n) 

\]=I / 

= - ~ ( - 1 ) ~ - l ( k  - 1)! ~ l--[ p(Qe) N ~ [ o ( Q ~ )  - 0(Q~)p(~)] 
.~ a = l  BCa  

; [  = - .  &]6 ~_~ ( - - 1 ) k - l ( k -  1)t ~=~el--~. p(Qa)p(Q=gl) 

+ a ~ ( -1)kk!  ~==1 P(Q=)P(q)] 

= - f  d~ 6p~,+l)(Q~l) 

which yields (50). 
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(ii) Let us then show that (50) implies (49). By definition of the truncated 
functions, 

k 

P(Q) = ~ 1--[ pr(Q~) (A2) 

We thus have, using (50), 

= --f  d~ e[p(Qc]) - p(Q)p(Ft) ] 

which yields (49). ~ 

Proof  of  Lemma 4 

Using the definition (A2), we have 

p(qQ) - p(Q)p(q) = Pr(qQI)p(QIQ~) (A3) 
~b ~:QI =Q 

and 

p(qql Q) - p(ql Q)p(q) 

= ~ PT(qa~) 1--[ PT(Q~) 
{qlQ} = v Q a  a r 1 

= ~ pr(qq~)I-~p~'(Q,~) + ~ p~(qq~Qlll--[ pT(Q,~) 
Q = u Q a ,  a Q = u Q a  c e r  

+ ~ PT(qQ1)[~lPT(Q~ql)1-71 PT(Q,~)+ o(ql)gI PT(Q~,)] 
@=uQa aCB a r  

a r  

= PT(qq~)P(Q) 4- ~ p,(qq~Q~)p(Q\QI) 
r 1 6 2  

+ ~ pT(qOl)p(qla\ol) 
(~r 

= pr(qql)p(Q) + ~ {pT(qq~Q~)p(Q\Q~) + pr(qQ~)p(q~Q\Q1)) 
Cr 

-- ~ PT(qQ1)[p(Q\Qa)p(ql) -- P(Q\Q~)P(ql)] 
r 1 6 2  



232 Ch. Gruber, Ch. Lugrin, and Ph. A. Martin 

Using (A3), 

= pr(qql)p(O) + p(ql)[p(qO) - p(q)p(O)] 

+ ~ {pT(qQ~)[p(q~QtQ1) - p(ql)p(O\Q1)] 
O C Q z = Q  

+ pr(qql Q1)P(Q\ Q1)} 

which concludes the proof, using (A3) once more for the expression 

[p(ql Q\ Q1) - p(ql)p(QI Q1)] 

P r o o f  of  L e m m a  5 

Consider first the case y > v. Choose E > 0 and A large enough so that 
by (58) and (al) 

I & ( x  - Y)l ~< ~/Ix l ' ,  lxl > A/2, lYl ~< r (14) 

IF(x)l ~< M2/lxl y, Ix I > a/2 (A5) 

Then, we decompose R ~ = Zz u Z2, where Z1 is the ball {x; Ix] ~< A/2} and 
Z2 = {x; lxl > a/a}, and write 

i(a) = a , [  e(aa + y -  x)gXx)dx = a , [  e ( a a -  x ) g X x -  y)dx 
ok v d~v  

=/~(a) + h(a) (16) 

where/~(h) and/2(h) are the integrals over E, and 2=, respectively. 
In El,  laa - xl > IA - ]xll  > a/2; thus by (A5) 

la,F(aO - x ) g . ( x  - y)[ ~ 2 ' M 2 ] g , ( x  - Y)l 

Since go ~ s we can apply the dominated convergence theorem, which 
yields, taking account of (60), 

lira II(A) = d(•) f go(x) dx (17) 
A-+~ �9 

In Z2, Ixl > V2 and (A4) gives 

]=(a) ~< ~ f  IF (ha  - x)l dx ~< ~[Iflll (A8) 
2 

(A7) and (18) give the desired result. 
We now treat the case y ~< v. 
Choose a number/ ,  such that 

[F(x)[ ~< M2/IxI ~, Ixl ~>/* (A9) 
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As above, take A such that A/2 > Ix and 

I&(x - Y)I ~< M1/lxl ~+~, 

1F(x)l < M~/Ixl', 

We decompose R~ into four regions: 

Y,1 = {x; Ixl < ~/2} 

Z~ = (x: Ix[ > 3A/2} 

z ,  = {x; laa - xl < if} 

Ixl ~ A/z, ly l /> r (A10) 

Ixl > ~/2 

N4 = {x; A/2 < Ix] < 3A/2, and xCZa} 

Z4 is the region included between the two regions Z1 and Z~ lessened by the 
ball Za centered in A~ of fixed radius ft. 

We write 

I(A) = II(A) + I2(A) + Ia(A) + I4(A) (A11) 

We have exactly, as for (A7), 

lira I1(),) = d(Ct)(go(x) dx (A12) 

We show that the other contributions to I(A) vanish as ) t ~  o~. In Z2, 
]Aft - x] > ]]x[ - A] > A/2 and (a5) applies: 

I1(a) <. M ~ |  Ig~(x - Y)I dx-+0 ,  A-+oo 
2 

since g~ is integrable. In Za, [xI > A/2; then, by (A10), 

I3(A) <<- ~ s  lF(;~ - x)] dx - Avm-@+~ f~xj~ lF(x)] dx 

Since F(x) is locally integrable and/x is fixed, this quantity tends obviously to 
zero as A ---> oe. In Z4, both (A9) and (A10) apply; thus 

MIM2 ( dx (A13) 
&(a) ~ ~ lad 

An estimate of potential theory (~s) states that for y ~< v 

la --xl' = [O(lg r), Y = v 

where D is some finite region (not including a when Y = v) and r is the radius 
of a ball of volume equal to that of D. Since the volume of 2;4 is proportional 
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to )e as 2, --+ 0% we get 

J= , laa - xl ~ tO(lg a ) ,  r = v 

and this, combined with (A13), concludes the proof of the lemma. [ ]  

For the proof of (66) we proceed exactly as in Lemma 5 with 
R(xa, xza~, Q) replacing go(x), and define the corresponding integrals Ij(3,), 
j =  1 ,2 ,3 ,4 .  The difference is that now R(xa, xla,,Q), x, = ~ f i + y ,  
depends itself on ~. But since we assume that the behavior (c2) of the trun- 
cated correlation functions is uniform with respect to xl,  we still have the 
equivalent of the estimates (A4) and (A10), i.e., 

(41xl', y > v for Ixl ~/ AI2; lYl < r 1R(x,~, x~,~l, Q)I ~< LMUixlv+~, 7 <- " 

(A14) 

Therefore, the proof that the integrals I2(A), I3(A), and IdA ) vanish as )t --> 0% 
which is based on (A14), requires no modification. Thus we get 

lira I(A) = lira I~(it) (A15) 

But i f x  is in Z~, then IA~F(A~ - x)l ~< 2'M2 [see (A7)] and thus 

II(A) = M ( F(A~7 - x)R(x - ya, x~a~, Q) dx 

4 2~M~( IR(xa, xz~,  Q)I dx (A16) 
JR 

The conjunction of (A15) and (A16) establishes (66). [ ]  

For the proof of Proposition 8, Lemma 5 is modified as follows. Under 
the assumptions (al), (68), and (69) we can choose E > 0 and a such that 

]Vgo(x - y)] ~< ~llxl ~ \ for Ix I >~ hi2, lY[ ~< r (A17) 
ig,(x Y)I -< 41xl ~-~3 (A18) 

and 

IF(x)l ~< MUIxI' \ 
I@(x)l ~< M2/Ixl ~-1) for 

Write I(A) = II(A) + Is(A) as in (A6); then 

lira I~(A) = d(Ct)f~ &(x)dx 
~ o o  v 

Ixl/> z/2 
(A19) 

(A20) 
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as in (A7). After an integration by parts, I2(h) reads 

I2(h) = h r f  Vx(~(hfi -- x ) g o ( x  -- y )  dx  
dl Ix[ > M2 

= a ~ f  (~(aa - x ) g ~ ( x  - y )  ds 
d; ~B(O,A[2) 

- ) t r f  c~(Aa - x )  Vxgo (x  - y )  dx  (A21) 
J Ixl > ~12 

In the first integral of(A21), Ix] = ~,/2, and by (A18) and (A20) this integral is 
majorized by 

( ~ )  h ~ 2 ' - l M 2 2 ' - l ~  
0B 0, . ~ hr_ ~ ~< csthr_v_z, ~,> v +  1 

With (A17) the second integral of (A21) is less than 

2 ' , ~  IS(ha - x)[ dx  <, 2',ll~lll 
Ji x[ > a]2 

This shows that l ima~.  I2(h) = 0 and concludes the proof  of the lemma. ! 

The estimate (66) is established exactly as above. 

NOTE A D D E D  IN PROOF 

The validity of the sum rules has been noticed by Dyson (17~ and Mehta 
and Dys0n ( ~  in their analysis of the logarithmic potential occurring in the 
theory of random matrices (see the remark (c) in section V of Ref. 18). 
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